A Self-Localization Method Using a Genetic Algorithm Considered Kidnapped Problem

Author:

Watanabe Kaori,Ma Yuehang,Kono Hitoshi,Suzuki Hidekazu, , ,

Abstract

The landmark project RoboCup is a well-known international robotics challenge that aims to advance robotics and AI research, with the end goal of developing robots capable of playing a game of soccer autonomously. Self-localization is one of the important elements for an autonomous soccer playing robot because the position information of the robot becomes a determinant of strategic behavior and cooperative operation. Although local searching is accurate, the lack of global searching results in the kidnapped robot problem. Thus, we propose a self-localization method that generates the searching space based on model-based matching using information regarding the white lines on the soccer field. The robot’s position is recognized by optimizing the fitness function using a genetic algorithm (GA). In this report, we adjust the parameter set of the GA on the basis of preliminary experiments and evaluate the accuracy of the proposed self-localization method. We verified that the proposed method enables real-time reversion to correct the position from the kidnapped position using the global/local searching ability of the GA.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3