Author:
Wang Qingzhu,Wei Mengying,Zhu Yihai, ,
Abstract
Compressive sensing (CS) of high-order data such as hyperspectral images, medical imaging, video sequences, and multi-sensor networks is certainly a hot issue after the emergence of tensor decomposition. Actually, the reconstruction accuracy with current algorithms is not ideal in some cases of noise. In this paper, we propose a new method that can recover noisy 3-D images from a reduced set of compressive measurements. First, multi-way compressive measurements are performed using Gaussian random matrices. Second, the mapping relationship between the variance of noise and the reconstruction threshold is found. Finally, the original images are recovered through reconstruction of pseudo inverse based on threshold selection. We experimentally demonstrate that the proposed method outperforms other similar methods in both reconstruction accuracy (within a range of the compression ratios and different variances of noise) and processing speed.
Publisher
Fuji Technology Press Ltd.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Research on Multiband Packet Fusion Algorithm for Hyperspectral Remote Sensing Images;Journal of Advanced Computational Intelligence and Intelligent Informatics;2019-01-20