A Curiosity-Based Autonomous Navigation Algorithm for Maze Robot

Author:

Zhang Xiaoping, ,Liu Yihao,Wang Li,Hu Dunli,Liu Lei

Abstract

The external reward plays an important role in the reinforcement learning process, and the quality of its design determines the final effect of the algorithm. However, in several real-world scenarios, rewards extrinsic to the agent are extremely sparse. This is particularly evident in mobile robot navigation. To solve this problem, this paper proposes a curiosity-based autonomous navigation algorithm that consists of a reinforcement learning framework and curiosity system. The curiosity system consists of three parts: prediction network, associative memory network, and curiosity rewards. The prediction network predicts the next state. An associative memory network was used to represent the world. Based on the associative memory network, an inference algorithm and distance calibration algorithm were designed. Curiosity rewards were combined with extrinsic rewards as complementary inputs to the Q-learning algorithm. The simulation results show that the algorithm helps the agent reduce repeated exploration of the environment during autonomous navigation. The algorithm also exhibits a better convergence effect.

Funder

Natural Science Foundation of Beijing Municipality

National Natural Science Foundation of China

Beijing Municipal Great Wall Scholar Program

Scientific Research Project of the Beijing Educational Committee

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3