Processing Micro Reactor by Non-Rotational Cutting Tool with Ultrasonic Vibration

Author:

Yoshimaru Masafumi, ,Koresawa Hiroshi,Narahara Hiroyuki,Suzuki Hiroshi

Abstract

In recent years, a micro reactor used in the chemical field is capable of compounding reagents by the fine passage that intersects with in a complicated manner. The micro reactor is requested to have a high-quality finish because it uses not only a general acryl material, but also a hard vulnerable material such as a glass with excellent corrosion resistance. Etching technology is used as a method to provide a fine groove, but it requires tremendous amounts of money. This study attempts to manufacture the micro reactor using micro cutting by a non-rotational tool to process hard vulnerable materials. Processing in the ductile mode is indispensable for processing of a hard vulnerable material such as a glass. If this is realized, a good finish can be obtained. In this report, processing using ultrasonic vibration is performed as a means to implement processing in the ductile mode. We made a comparison with a finish by end mill tool and confirmed an increase in the infeed and the effect of cutting in water on the finish. We performed experiments on cutting the micro reactor under the optimum condition and confirmed that a non-rotational tool could process a hard vulnerable material. The following is a report of this matter.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ultra-Low-Frequency Vibration Assisted Machining of Ti-6Al-4V Alloy;International Journal of Automation Technology;2016-07-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3