Identification of 5-Axis Machine Tools Feed Drive Systems for Contouring Simulation

Author:

Sencer Burak, ,Altintas Yusuf,

Abstract

An identification technique is introduced for identifying closed loop transfer function of machine tool’s feed drive systems to be used in simulation of the tracking and contouring performance of Computer Numerical Controlled (CNC) machine tools. The identification is performed from air-cutting tests utilizing only standard G-codes containing linear motion commands. A general transfer function model is derived for representing the closed loop tracking response of the feed drive system. The model considers the drive to be controlled by commonly used controller schemes such as P-PI Cascade, PID or the Sliding Mode Controller (SMC) with feed-forward dynamic and friction compensation. The parameters of the model transfer function are fitted tominimize the discrepancy between the actual and predicted axis position on the axis. In order to guarantee the stability of the identified model transfer function, bounds on the pole locations are imposed. The resultant constrained non-linear optimization problem is solved efficiently using the Particle Swarm Optimization (PSO) method. For achieving reliable convergence of the stochastic PSO algorithm, a parameter tuning strategy is presented. Simulation and experimental studies show that the identified feed drive model captures the fundamental dynamics of the drives system accurately for simulating their closed loop response. Combined with the kinematics of the machine, contouring errors of 5-axis CNC machine tools during simultaneous multi-axis motion are predicted.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3