Development of Resin Fibrous Grinding Wheels Using Twin Nozzle PELID and Analysis of Their Grinding Performance

Author:

Kashimura Satoshi,Inazawa Katsufumi,Ohmori Hitoshi,Itoh Nobuhide, ,

Abstract

The development of grinding wheels that are capable of improving the grinding accuracy and the finished surface roughness via the grinding process is increasingly sought in industries. The refinement of grinding wheels comprising abrasive grains is an effective means of improving the ground surface quality. The general methods used for fabricating grinding wheels tend to facilitate the aggregation of fine abrasive grains, resulting in poor abrasive distribution. Therefore, we focused on the electro-spinning mode of Patterning with Electrostatically Injected Droplet (PELID), which is capable of forming micro resin fibers. Subsequently, we attempted to fabricate fibrous grinding wheels containing abrasive grains by using the twin nozzle PELID technique that applies this mode. We confirmed through experiments that resin fibers containing abrasive grains can be manufactured efficiently using PELID and succeeded in manufacturing fibrous grinding wheels containing abrasive grains.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference22 articles.

1. H. Kogane et al., “Study on mirror grinding wheel made of natural stone for both hard and brittle materials,” Proc. 2014 JSPE Spring Meeting, pp. 643-644, 2014 (in Japanese).

2. H. Hosokawa et al., “Study on mirror grinding for SiC using oxidizing agent,” Proc. 2016 JSPE Autumn Meeting, pp. 213-214, 2016 (in Japanese).

3. M. Nagashima et al., “Development of a newly porous vitrified bond mirror grinding wheel and the evaluation,” Proc. 2016 JSPE Spring Meeting, pp. 353-354, 2016 (in Japanese).

4. M. Mekata et al., “Mirror Finishing of SiC by UV-Assisted Constant-Pressure Grinding,” Int. J. Automation Technol., Vol.13, No.6, pp. 749-755, 2019.

5. T. Kato et al., “Manufacture of mechano-chemical elastic grinding stone and the finishing characteristic,” Proc. 2017 JSPE Autumn Meeting, pp. 25-26, 2017 (in Japanese).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3