Compensation for Thermal Deformation of a Compact Lathe in Cutting Operations Using a Coolant Fluid with Temperature Measurements at a Few Specific Points

Author:

Ishino Yoshiaki,Tachiya Hiroshi,Kaneko Yoshiyuki, ,

Abstract

We previously designed a compact computer numerical control (CNC) lathe that arranges its heat sources so as to reduce their thermal deformation. However, a compact lathe often undergoes large deformation owing to unexpected thermal conditions arising out of the work environment or from operation of the lathe itself. Hence, we propose a method to determine equations predicting thermal deformation in a CNC lathe from temperatures measured at a few specific points. These equations enable one to effectively compensate for lathe thermal deformation. However, they cannot be applied to cutting operations involving a coolant fluid because the coolant fluid flow may lead to a complicated thermal deformation scenario. In this study, we attempted to more accurately compensate for thermal deformation, for cutting operations involving a coolant fluid, by adding simple calibration coefficients to the prediction equations. We applied the modified equations to a numerically controlled controller and validated our approach for cutting operations using a coolant fluid under various conditions.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3