Riding Motion Capture System Using Inertial Measurement Units with Contact Constraints
-
Published:2019-07-05
Issue:4
Volume:13
Page:506-516
-
ISSN:1883-8022
-
Container-title:International Journal of Automation Technology
-
language:en
-
Short-container-title:IJAT
Author:
Maruyama Tsubasa,Tada Mitsunori,Toda Haruki, ,
Abstract
The measurement of human motion is an important aspect of ergonomic mobility design, in which the mobility product is evaluated based on human factors obtained by digital human (DH) technologies. The optical motion-capture (MoCap) system has been widely used for measuring human motion in laboratories. However, it is generally difficult to measure human motion using mobility products in real-world scenarios, e.g., riding a bicycle on an outdoor slope, owing to unstable lighting conditions and camera arrangements. On the other hand, the inertial-measurement-unit (IMU)-based MoCap system does not require any optical devices, providing the potential for measuring riding motion even in outdoor environments. However, in general, the estimated motion is not necessarily accurate as there are many errors due to the nature of the IMU itself, such as drift and calibration errors. Thus, it is infeasible to apply the IMU-based system to riding motion estimation. In this study, we develop a new riding MoCap system using IMUs. The proposed system estimates product and human riding motions by combining the IMU orientation with contact constraints between the product and DH, e.g., DH hands in contact with handles. The proposed system is demonstrated with a bicycle ergometer, including the handles, seat, backrest, and foot pedals, as in general mobility products. The proposed system is further validated by comparing the estimated joint angles and positions with those of the optical MoCap for three different subjects. The experiment reveals both the effectiveness and limitations of the proposed system. It is confirmed that the proposed system improves the joint position estimation accuracy compared with a system using only IMUs. The angle estimation accuracy is also improved for near joints. However, it is observed that the angle accuracy decreases for a few joints. This is explained by the fact that the proposed system modifies the orientations of all body segments to satisfy the contact constraints, even if the orientations of a few joints are correct. This further confirms that the elapsed time using the proposed system is sufficient for real-time application.
Publisher
Fuji Technology Press Ltd.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Reference34 articles.
1. W. Karwowski, M. M. Soares, and N. A. Stanton, “Human factors and ergonomics in consumer product design: methods and techniques,” CRC Press, 2011. 2. J. Schmidt, D. Krüger, S. Eilmus, K. Paetzold, S. Wartzack, and D. Krause, “Design for mobility – A methodical approach,” Proc. of 12th Int. Design Conf., pp. 1101-1110, 2012. 3. J. Yang, J. H. Kim, K, Abdel-Malek, T. Marler, S. Beck, and G. R. Kopp, “A new digital human environment and assessment of vehicle interior design,” Computer-Aided Design, Vol.39, Issue 7, pp. 548-558, 2007. 4. T. Lin, T. Dayasoma, V. A. Ubesiri, and V. Wickramaratne, “Ergonomics product development of park bench in CAD environment,” Int. J. Automation Technol., Vol.10, No.2, pp. 153-162, 2016. 5. Y. Endo, M. Tada, and M. Mochimaru, “Hand modeling and motion reconstruction for individuals,” Int. J. Automation Technol., Vol.8, No.3, pp. 376-387, 2014.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|