Comparison of Pose Correspondence Methods of Master-Slave Manipulators for Neurosurgical Robotic Systems

Author:

Yonemura Tsubasa, ,Kozuka Yasuhide,Baek Young Min,Sugita Naohiko,Morita Akio,Sora Shigeo,Mochizuki Ryo,Mitsuishi Mamoru, , ,

Abstract

Performing microsurgery in the field of neurosurgery is very challenging because neurosurgeons have to suture fine vessels by maneuvering long, thin surgical instruments inserted through a small hole in the skull. In order to assist neurosurgeons, a novel master-slave surgical robotic system has been developed. The objective of the surgical robotic system is to assist neurosurgeons in performing micro surgery in deep surgical fields by providing high dexterity. However, a method of correspondence between master and slave manipulators has not yet been studied, though this is strongly related to the operability and usability of robotic surgery. In this paper, we propose two pose correspondence methods for the master and slave manipulators, axis-based relative pose correspondence and vector-based absolute pose correspondence, and their usability and operability are verified by performing pointing and suturing tasks. The experimental results show that there is a trade-off between the two correspondence methods in terms of time, length of trajectory, and the singular point problem.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3