Abstract
Stiffness is an important property of mechanical structures, particularly when it is necessary for a structure to contact other structures while in motion. In this study, we employed the advantages of additive manufacturing (AM) technology to create a multi-material structure and to investigate its stiffness properties. Herein, we also present an analytical model for designing a mechanical structure consisting of two-material, single-beam units, which was verified using a finite element simulation in our study. As an example, a two-material structure with the desired stiffness was fabricated using commercially available AM technology and employing both a soft material (natural rubber) and a hard material (acrylonitrile-butadiene-styrene resin, ABS).
Publisher
Fuji Technology Press Ltd.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Reference19 articles.
1. I. Gibson, D. Rosen, and B. Stucker, “Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing,” 2nded., Springer, 2014.
2. P. Bartolo, J. P. Kruth, J. Silva, G. Levy, A. Malshe, K. Rajurkar, M. Mitsuishi, J. Ciurana, and M. Leu, “Biomedical production of implants by additive electro-chemical and physical processes,” CIRP Annals – Manufabturing Technology, Vol.61, pp. 635–655, 2012.
3. R. V. Noort, “The future of dental devices is digital,” Dental Materials, Vol.28, pp. 3–12, 2012.
4. M. Tomlin and J. Meyer, “Topology Optimization of an Additive Layer Manufactured (ALM) Aerospace Part,” Altair CAE Technology Conf., 2011.
5. H. Koresawa, H. Fukumaru, M. Kojima, J. Iwanaga, H. Narahara, and H. Suzuki, “Design Method for Inner Structure of Injection Mold Fabricated by Metal Laser Sintering,” Int. J. of Automation Technology, Vol.6, No.5, pp. 591–596, 2012.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献