Restraint of Voids Generated Inside Injection Molded Products by In-Mold Pressing Method

Author:

Motegi Atsushi,Hishida Tomohiro,Murata Yasuhiko, ,

Abstract

In recent years, long glass fiber reinforced plastic and carbon fiber reinforced plastic have begun to be used for structural components that require high strength. As a result, thick-walled injection molded products are being manufactured. However, defects, known as voids, are generated inside the molded product and decrease the strength of the molded product, posing a significant problem at molding production sites. The partial compression method, which is a type of injection compression molding, is effective in preventing voids in thick-walled injection molding. However, there have been limited studies that comprehensively investigated the effects of the compression conditions on void prevention in thick-walled injection molding products or the shape and dimension of the molded product, or the issues in the molded product produced by applying compression. The authors have previously proposed the in-mold pressing (IMP) method, which allows the application of partial compression without the use of an injection compression molding machine and verified its validity. In this study, we proposed a compression device in which a servomotor-driven hydraulic pump actuator is used to propel a movable rod to apply compression to the melt inside the mold cavity. The IMP method using this device was applied to mold thick-walled products with thicknesses of 10 mm and greater, and the effects of compression on the generation of voids inside the molded product and the shape and dimensions of the product were investigated. The results indicate that the generation of voids can be prevented by application of this method. In addition, it was found that marginal deformations, which can pose issues, occur in the molded product when compressive stresses generated inside the molded product by compression are released after demolding.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference20 articles.

1. Y. Suga, “Technology Trend on CFRP Development,” Preprints of Seikei-Kakou Autumnal Meeting 2011, pp. 167-168, 2011.

2. Textile and Clothing Division Manufacturing Industries Bureau, “The State of National Projects Related to the Thermoplastics CFRP,” J. of the Japan Society of Polymer Processing, Vol.27, No.3, pp. 78-81, 2015.

3. A. Hiroe and M. Motoyoshi, “Plastic Seikei-kakou Nyumon,” Nikkan Kogyo Shimbun, Ltd., pp. 243-244, 1995.

4. Japan Society of Polymer Processing, “Text Series – Polymer Processing I –,” Sigma Publishing Co., Ltd., p. 148, 1996.

5. H. Yokoi and A. Orino, “Experimental Analyses of the Melt Behavior and the Void Generation Process in a Thick Cavity,” Preprints of Seikei-Kakou Annual Meeting 1999, pp. 91-92, 1999.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3