Reduction of the Influence of Non-Repeatable Run-Out in X-Y Plane of Machining Surface

Author:

Showa Yuta,Yoshioka Hayato, ,

Abstract

In recent years, the quality of the machined surfaces of molds for optical or medical instruments has needed improvement, and the fabrication of mirrored surfaces by means of cutting only has been gaining in importance. In order to obtain smooth surfaces, it is necessary to reduce various vibrations in the machine tool during the machining process. Many factors cause vibration in a machine tool, including feed mechanisms, pumps, and chatter. A high-speed spindle for precision machining is one source of vibration, but it is a challenge to avoid the non-repeatable run-out (NRRO) of a spindle. This study has developed an excitation system that can reduce the influence of non-repeatable run-out on machining surfaces. This paper presents a newly-developed excitation system with an excitation unit for each the X and Y direction. The excitation units consist of a voice coil motor and leaf springs, fixed on a spindle head. The tool run-out and vibration of the spindle head are measured by a displacement sensor and an acceleration sensor fixed on the spindle head, and their NRRO components are obtained through extraction using band-pass filters. By using these NRRO components as feedback signals, the excitation unit generates the force to cancel the NRRO of the tool. In order to determine the performance of the developed system, experimental evaluation was performed on a vertical 3-axis machining center. Since the spindle used for evaluation had three bearings, the measured NRRO of the tool had three peaks in the frequency domain. First, we conducted evaluation experiments under non-machining conditions, and all NRRO peaks were reduced by applying the developed system. Furthermore, there was no interference of the excitation units in the X and Y directions. Next, we evaluated the influence of the NRRO of the tool on the machining surface under finish machining conditions. The reduction in NRRO components in the measured surface profiles was observed through feedback. It was concluded that the developed system can reduce the influence of NRRO on machining surfaces.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3