Formation of Hydroxyapatite Layer on Ti–6Al–4V ELI Alloy by Fine Particle Peening

Author:

Kikuchi Shoichi,Nakamura Yuki,Nambu Koichiro,Akahori Toshikazu, , , ,

Abstract

Fine particle peening (FPP) using hydroxyapatite (HAp) shot particles can form a HAp layer on room-temperature substrates by the transfer and microstructural modification of the shot particles. In this study, FPP with HAp shot particles was applied to form a HAp surface layer and improve the fatigue properties of Ti–6Al–4V extra-low interstitial (ELI) for use in bio-implants. The surface microstructures of the FPP-treated specimens were characterized by micro-Vickers hardness testing, scanning electron microscopy, energy-dispersive X-ray spectrometry, X-ray diffraction, and X-ray photoelectron spectroscopy. FPP with HAp shot particles successfully formed a HAp layer on the surface of Ti–6Al–4V ELI in a relatively short period by shot particle transfer at room temperature; however, the thickness and elemental composition of the HAp layer were independent of the FPP treatment time. The original HAp crystal structure remained in the surface-modified layer formed on Ti–6Al–4V ELI after FPP. Furthermore, FPP increased the surface hardness and generated compressive residual stresses at the treated surface of Ti–6Al–4V ELI. Four-point bending fatigue tests were performed at stress ratios of 0.1 and 0.5 to examine the effect of FPP with HAp shot particles on the fatigue properties of Ti–6Al–4V ELI. The fatigue life of the FPP-treated specimen was longer than that of the un-peened specimen because of the formation of a work-hardened layer with compressive residual stress. However, no clear improvement in the fatigue limit of Ti–6Al–4V ELI occurred after FPP with HAp shot particles because of subsurface failures from characteristic facets.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3