Proposal of Contour Line Model for High-Speed End Milling Simulation

Author:

Nishida Isamu, ,Shirase Keiichi

Abstract

A contour line model for end milling simulation, which realizes high-speed arithmetic processing by reducing memory usage, is proposed. In this model, a 3-dimensional shape can be expressed by superimposing the contour lines of the cross-sections obtained by dividing the workpiece along any axial direction. Therefore, the memory usage is reduced compared to a Z-map model or a voxel model as the interior information of the object can be eliminated. The contour line model can also be applied to complicated shapes having overhangs. Furthermore, cutting volume can be calculated from the interference area enclosed by two contour lines of the workpiece and the tool cross-sections. The workpiece shape can be changed by eliminating the interference area. In the contour line model, cutting force can also be predicted with an instantaneous rigid force model using the uncut chip thickness for each cutting edge from the positional relationship between the interference area and the cutting edge. To validate the proposed model, cutting experiments were conducted, which confirmed that the predicted machining shape had good agreement with the actual machined shape. Furthermore, it was confirmed that the cutting force can be predicted accurately.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automated Process Planning System for End-Milling Operation by CAD Model in STL Format;International Journal of Automation Technology;2021-03-05

2. Automated Tool Path Generation for Roughing Using Flat Drill;International Journal of Automation Technology;2020-11-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3