Generation of Uniformly Aligned Dimples on a Curved Surface Using a Curved-Surface, Patch-Division Milling Technique

Author:

Xu Kai, ,Sasahara Hiroyuki,

Abstract

Many products are designed with surface textures that enhance the aesthetic and tactile qualities of the product. In this paper, a curved-surface, patch-division milling technique is proposed for creating uniform aligned cutter marks on a curved surface. Previous research demonstrated a ball-end milling technique that divides the surface into small planar patches where each patch is generated by a helical tool path with dimples in uniform alignment. Because the patches are planar, it is impossible to precisely machine a concave or convex surface. However, the technique could only approximate a method for machining curved surfaces. To resolve this issue, curved surface patches were developed to generate the patch directly according to the shape of the targeted curved surface. The dimples are expected to be uniformly aligned on curvedsurface patches. Therefore, the targeted surface should be cut using an appropriate machining condition. According to the test results, the distribution of dimples was the same as the pre-determined distribution. In addition, the dimples were regularly aligned when viewed from a specific angle. This proposed method overcomes the deviation of the dimple's positions, which is caused by the acceleration--deceleration of the machine tool and the change of the cutting point during five-axis machining.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Process planning of the automatic polishing of the curved surface using a five-axis machine tool;The International Journal of Advanced Manufacturing Technology;2022-04-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3