Effect of Vibration Behavior in Low-Frequency Vibration Cutting on Surface Properties of Workpiece
-
Published:2023-09-05
Issue:5
Volume:17
Page:434-448
-
ISSN:1883-8022
-
Container-title:International Journal of Automation Technology
-
language:en
-
Short-container-title:IJAT
Author:
Kodama Hiroyuki1ORCID, Matsuno Shota1, Shibata Naoyuki1, Ohashi Kazuhito1ORCID
Affiliation:
1. Okayama University, 3-1-1 Tsushima Naka, Okayama 700-8530, Japan
Abstract
The objective of this study was to determine the effect of vibration behavior on workpiece surface properties in low-frequency vibration cutting. The effects of the parameters that determine vibration behavior on surface roughness were quantitatively evaluated through a comparison with other cutting conditions. Furthermore, by clarifying how the surface properties of the workpiece, such as roughness, roundness, and cross-sectional curves, change depending on the vibration behavior, a search for optimal conditions for low-frequency vibration cutting was conducted. The best surface properties were obtained under the condition of spindle rotation per vibration E=4.5. By using a value close to the minimum possible spindle rotation R=0.5 when the workpiece is retracted, it is expected to be effective in suppressing the variation in surface roughness at each phase angle; this variation is characteristic of low-frequency vibration cutting. Workpieces machined under low-frequency vibration conditions such as (E=2.5, R=1.0) and (E=3.5, R=1.0) were found to form characteristic surface patterns on the workpiece surface owing to a phenomenon in which the depth of the cut to the workpiece changes.
Publisher
Fuji Technology Press Ltd.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Reference21 articles.
1. A. Kitakaze, K. Noguchi, M. Muramatsu, S. Kato, K. Sannomiya, and T. Nakaya, “Development of Low Frequency Vibration-Cutting,” J. of the Horological Institute of Japan, Vol.60, No.215, pp. 2-6, 2016 (in Japanese). https://doi.org/10.20805/micromechatronics.60.215_2 2. “Cutting Tools-World Markets, End-Users & Competitors: 2005–2010,” Dedalus Consulting, 2005. 3. A. Miyake, A. Kitakaze, S. Katoh, K. Noguchi, K. Sannomiya, T. Nakaya, and H. Sasahara, “Chip control in turning with synchronization of spindle rotation and feed motion vibration,” Precision Engineering, Vol.53, pp. 38-45, 2018. https://doi.org/10.1016/j.precisioneng.2018.02.012 4. S. Ramalingam and J. D. Watson, “Tool Life Distributions–Part1: Sjngle-lnjury Tool-Life Model,” Trans. ASME, J. Eng. Ind., Vol.99. No.3, pp. 519-522, 1977. https://doi.org/10.1115/1.3439271 5. A. Miyake, H. Sasahara, A. Kitakaze, S. Katoh, M. Muramatsu, K. Noguchi, K. Sannomiya, and T. Nakaya, “Effect of Low Frequency Vibration Applied to Feed Direction on Turning Process,” Int. Symp. on Flexible Automation (ISFA), pp. 356-358, 2016. https://doi.org/10.1109/ISFA.2016.7790188
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|