Compensation Method for Tool Setting Errors Based on Non-Contact On-Machine Measurement

Author:

Xu Meng,Nakamoto Keiichi,Takeuchi Yoshimi, ,

Abstract

The high-accuracy manufacturing of optical requires highly integrated ultraprecision cutting technologies. However, all sorts of small errors adversely affect machining accuracy because of the miniaturization and complexity of objects. Among these errors, slight setting errors critically impact machining accuracy because it is difficult to place a cutting tool accurately on a ultraprecision machine tool. The authors have conducted multi-axis control ultraprecision cutting based on tool setting errors compensation. In this compensation method, the workpiece must be removed from the machine tool after test cutting to measure grooves to detect actual tool positions and to calculate setting errors. However, after the workpiece is removed, it cannot be perfectly replaced on a ultraprecision machine tool. This makes it difficult to automate setting errors compensation. In order to solve these problems, tool positioning must be detected without removing the workpiece. Therefore, in this study, a novel compensation method is developed by means of non-contact measurement with a laser imaging device. Furthermore, in order to improve compensation performance, a laser imaging device is calibrated on an ultraprecision machine tool. The proposed method enables direct detection of actual tool position and calculation of the tool centerpoint coordinate on the machine coordinate system. By modifying an NC program, the tool setting errors can be finally compensated. The feasibility of the proposed compensation method is verified by conducting experiments of creating grooves.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improvement in the efficiency of the five-axis machining of aerospace blisks;Science Progress;2022-10

2. On-Machine Tool Condition Monitoring System Using Image Processing;International Journal of Automation Technology;2022-05-05

3. Automated workpiece setting operation by on-machine measurement for efficient ultraprecision cutting of micro-shapes;Journal of Advanced Mechanical Design, Systems, and Manufacturing;2022

4. Selection of laser power in digital coaxial holographic tool setting;2021 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO);2021-08-02

5. Profile Measurement Using Confocal Chromatic Probe on Ultrahigh Precision Machine Tool;International Journal of Automation Technology;2021-03-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3