Author:
Wang Qinghua, ,Tsuda Hiroshi,Kishimoto Satoshi,Tanaka Yoshihisa,Kagawa Yutaka, ,
Abstract
This paper presents two up-to-date moiré techniques for deformation measurement based on the memory function of a laser scanning microscope (LSM). The two techniques are the LSM overlapping moiré method and the LSM secondary moiré method. The formation principles and the measurement principles of these two methods are presented and compared to those of the traditional scanning moiré method for the first time. The applicable conditions and characteristics of these three moiré techniques are analyzed. Some typical moiré fringes on a strain gauge, carbon fiber reinforced plastics, a polyimide film, and a silicon wafer are illustrated. Our proposed LSM overlapping moiré method and LSM secondary moiré method are able to expand the application range of the LSM in deformation measurement to the micron and the submicron scales.
Publisher
Fuji Technology Press Ltd.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Reference24 articles.
1. R. Weller and B. Shepard, “Displacement Measurement by Mechanical Interferometry,” Proc. Soc. Exp. Stress Analysis, Vol.6, No.1, pp. 35-38, 1948.
2. B. Han, P. Ifju, and D. Post, “Geometric Moirée methods with enhanced sensitivity by optical/digital fringe multiplication,” Exp. Mech., Vol.33, No.3, pp. 195-200, 1993.
3. S. Ri, S. Hayashi, S. Ogihara, and H. Tsuda, “Accurate full-field optical displacement measurement technique using a digital camera and repeated patterns,” Opt. Express, Vol.22, No.8, pp. 9693-9706, 2014.
4. Q. H. Wang, S. Kishimoto, X. F. Jiang, and Y. Yamauchi, “Formation of secondary Moirée patterns for characterization of nanoporous alumina structures in multiple domains with different orientations,” Nanoscale, Vol.5, pp. 2285-2289, 2013.
5. Q. H. Wang, S. Kishimoto, and Y. Yamauchi, “Three-directional structural characterization of hexagonal packed nanoparticles by hexagonal digital moirée method,” Opt. Lett., Vol.37, pp. 548-550, 2012.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献