Author:
Yamada Hiroko,Konishi Kensuke,Shimada Keita,Mizutani Masayoshi,Kuriyagawa Tsunemoto, ,
Abstract
Bacterial growth is one of the common causes of putrefaction and deterioration of water-soluble machining fluid. The 16S ribosomal DNA metagenome analysis of the bacterial species composing the microbial flora present in the machining fluid derived after processing demonstrated a high amount of species belonging to the Pseudomonas genus. Therefore, we prepared two types of ultrafine bubbles water (gas species: air and CO2) containing different types of gas and confirmed the bactericidal effect on Pseudomonas aeruginosa (ATCC 10145), a typical Pseudomonas species. The grinding fluid was prepared using sterile purified water containing ultrafine bubbles (hereafter referred to as UFB) as diluted water, and the Pseudomonas aeruginosa was inoculated to obtain 106 CFU/mL. The sterilization rate of the number of bacteria was determined immediately after immersion in each fluid and subsequently after two hours. The sterilization rate was determined to be 100% in the test group using the ultrafine bubbles water of CO2 (CO2-UFB water). As a comparative control, a similar test was performed on Staphylococcus aureus IFO12732, and the sterilization rate was determined as 0%. Fluorescence microscopic observation of bacteria after immersion in the CO2-UFB water demonstrated damage to the cell wall as the cause of death of the Pseudomonas aeruginosa. Therefore, CO2-UFB demonstrated sterilization of machining fluid by killing Pseudomonas aeruginosa in the machining fluid. The bactericidal mechanism of UFB involved the induction of damage in bacterial cell walls. This can be attributed to crushing due to the increase in the particle size of UFB.
Funder
Japan Society for the Promotion of Science
Publisher
Fuji Technology Press Ltd.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Reference20 articles.
1. F. P. Ferraz de Campos, A. Felipe-Silva et al., “Community-acquired Pseudomonas aeruginosa-pneumonia in a previously healthy man occupationally exposed to metalworking fluids,” Autops Case Rep., Vol.4, No.3, pp. 31-37, 2014.
2. N. Di Maiuta, A. Rufenacht, and P. Kuenzi, “Assessment of bacteria and archaea in metalworking fluids using massive parallel 16S rRNA gene tag sequencing,” Lett. Appl. Microbiol., Vol.65, No.4, pp. 266-273, 2017.
3. L. E. Maier, H. P. Lampel, T. Bhutani, and S. E. Jacob, “Hand dermatitis: a focus on allergic contact dermatitis to biocides,” Dermatol. Clin., Vol.27, pp. 251-264, 2009.
4. Asahi Research Center report (RS-1007), November 2016 (in Japanese).
5. M. Takahashi, “Environmental Improvement and Food Safety by Micro-Bubble Technology,” Bulletin of the Society of Sea Water Science, Japan, Vol.59, No.1, pp. 17-22, 2005 (in Japanese).
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献