Author:
Shinonaga Togo, ,Iida Yuta,Toshimitsu Ryota,Okada Akira
Abstract
In recent years, one common cure for losses in joint function caused by osteoarthritis or rheumatoid arthritis is replacement with an artificial joint. For this reason, it is necessary to add osteoconductivity to artificial joint component surfaces that make contact with bone, thereby reducing the period of time necessary to fixate the bone tissue and the artificial joint component. With the intent of efficiently machining the joint shape by electrical discharge machining (EDM) and simultaneously formation of a surface with osteoconductivity, this study discusses the possibility of adding osteoconductivity to a titanium EDMed surface.
Publisher
Fuji Technology Press Ltd.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Reference21 articles.
1. T. Albrektsson, P.I. Bråemark, H.A. Hansson, B. Kasemo, K.Larsson, I. Lundström, D. H. McQueen, and R. Skalak., “The interface zone of inorganic implantsIn vivo: Titanium implants in bone,” Ann. Biomed. Eng., Vol.11, pp. 1-27, 1983.
2. X. Liua, P.K. Chub, and C. Ding, “Surface modification of titanium, titanium alloys, and related materials for biomedical applications,” Materials Science and Engineering R,Vol.47, pp. 49-121, 2004.
3. J. A. DiPisa, G. S. Sih, and A. T. Berman, “The Temperature Problem at the Bone-Acrylic Cement Interface of the Total Hip Replacement,” Clin. Orthop, Res., Vol.121, pp. 95-98, 1976.
4. W. Petty, “Methyl methacrylate concentrations in tissues adjacent to bone cement,” J. Biomed. Mater. Res., Vol.14, pp. 427-434, 1980.
5. H. Yoshikawa, T. Nakano, A. Matsuoka, and Y. Nakashima, “Miraigatajinkoukansetsuwomezashite – sonorekishikara shouraitenboumade –,” NIHON IGAKUKAN, p. 299, 2013 (in Japanese).
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献