Effect of Cutting Speed on Shape Recovery of Work Material in Cutting Process of Super-Elastic NiTi Alloy

Author:

Yang Hao,Sakai Katsuhiko,Shizuka Hiroo,Kurebayashi Yuji,Hayakawa Kunio,Nagare Tetsuo, , ,

Abstract

Increasing use of NiTi alloy products makes it very important to improve the cutting performance of this material. This study presents the effect of cutting speed on radial shape recovery of work material which is supposed to deteriorate the dimension accuracy in cutting process of super-elastic NiTi alloy. The shape recovery of work material was investigated at the beginning of cutting process, during the stable part of cutting process and after feed stops respectively utilizing a high-speed camera and a cutting force dynamometer in orthogonal cutting experiments at various cutting speeds. The mechanism of the shape recovery was investigated by analyzing the crystallization phase state of work material before and after cutting using XRD and measuring the temperature distributions on the end surface of work material during orthogonal cutting experiments using non-reversible temperature indicating paints correspondingly. Results show that at relatively low cutting speed, the temperature of work material near the cutting point did not exceed the threshold temperature of phase transformation, and thus work material generated obvious shape recovery throughout the whole cutting process due to the phase transformation. Increasing cutting speed could increase the temperature of work material; when cutting speed increased to 100 m/min, the temperature of work material near the cutting point exceeded the threshold temperature of phase transformation, thus work material did not generate obvious shape recovery because it could not undergo any form of phase transformation during the stable part of cutting process and after feed stops. Consequently, increasing cutting speed could be proposed as an approach to improve dimension accuracy by inhibiting shape recovery of work material in cutting process of NiTi alloy.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3