One Action Press Forming of Helix Bevel Gear by Using Multi-Cylinder Press and Die Heating System

Author:

Nakamura Katsuaki, ,Koresawa Hiroshi,Narahara Hiroyuki

Abstract

In the case of a complex shaped helix bevel gear, the forging of complete gear tips is very difficult to achieve. In almost all cases, tooth profile is finished by cutting machine from simple shaped forged parts, therefore requiring considerable machining time and cost. However, there are many approaches to forging. Forging is mainly classified as hot and cold forging, and uses a single motion press. In the case of hot forging takeoff of products from die is difficult by the cooling shrinkage from die and accuracy of products is lower level than cold forging. In addition, in the case of cold forging, a complicated shape is difficult to achieve based on the lack of ductility of the materials. To realize a helix bevel gear using a single forging operation, we applied a tool heating system and three-axis forging press. The tool heating system is applied to prevent a temperature decrease in the material by contact between the tool and forging material during the forging process. Further, to optimize the forging direction and timing, we used a three-axis forging press. We confirmed good forging capability of this special forging process, as well as the high precision of the forged parts. Moreover, through the thermo-mechanical control of steel and the tool temperature, the forged parts showed good mechanical properties, such as high hardness.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference20 articles.

1. K. Yasa, “Determining the deformation pressure in warm forging,” Metallurgia and Metal Forming, pp. 164-171, 1974.

2. K. Yasa and Y. Murata, “Mechanical properties and microstructure of wam-extruded carbon steel,” Metallurgia and Metal Forming, pp. 290-297, 1974.

3. K. Kawamoto, T. Yoneyama, and M. Okada, “Back-Pressure Forging Using a Servo Die Cushion,” Int. J. Automation Technol., Vol.9, No.2, pp. 184-192, 2015.

4. A. Schöch, A. Salvadori, I. Germann, S. Balemi, C. Bach, A. Ghiotti, S. Carmignato, A. L. Maurizio, and E. Savio, “High-Speed Measurement of Complex Shaped Parts at Elevated Temperature by Laser Triangulation,” Int. J. Automation Technol., Vol.9, No.5, pp. 558-566, 2015.

5. N. Shiraisi, Y. Nakajima, K. Nakamura, Y. Azuma, K. Uchio, N. Ashie, and R. Matubara, “Near Net Forging of copper alloys,” Conf. on Die and Mould Technology, C-6, November 2001.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Forming of Multiple Straight Convex Shapes on Aluminum Sheet Using Impulsive Water Pressure;International Journal of Automation Technology;2022-05-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3