Statistical and Artificial Intelligence Analyses of Blast Treatment Condition Effects on Blast-Assisted Injection Molded Direct Joining

Author:

Wang Shuohan1,Kimura Fuminobu12,Zhao Shuaijie2,Yamaguchi Eiji3,Ito Yuuka3,Suzuki Yukinori3,Kajihara Yusuke12

Affiliation:

1. Department of Precision Engineering, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan

2. Institute of Industrial Science, The University of Tokyo, Tokyo, Japan

3. SINTOKOGIO LTD., Toyokawa, Japan

Abstract

Efficient hybrid joining methods are required for joining metals and plastics in the automobile and airplane industries. Injection molded direct joining (IMDJ) is a direct joining technique that uses metal pretreatment and injection molding of plastic to form joints without using any additional parts. This joining technique has attracted attention from industries for its advantages of high efficiency and low cost in mass production. Blast-assisted IMDJ, an IMDJ technique that employs blasting as the metal pretreatment, has become suitable for the industry because metal pretreatment can be performed during the formation of the metal surface structure without chemicals. To satisfy industry standards, the blast-assisted IMDJ technique needs to be optimized under blasting conditions to improve joining performance. The number of parameters and their interactions make this problem difficult to solve using conventional control variable methods. We propose applying statistical and artificial intelligence analyses to address this problem. We used multiple linear regression and back propagation neural networks to analyze the experimental data. The results elucidated the relationship between the blasting conditions and joining strength. According to the machine learning predicted results, the best joining strength in blast-assisted IMDJ reached 22.3 MPa under optimized blasting conditions. This study provides new insights into similar engineering problems.

Funder

Japan Society for the Promotion of Science

Die and Mould Technology Promotion Foundation

Foundation for the Promotion of Industrial Science

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3