Feasibility Study of Performance Assessment Gauge for Freeform Measurement

Author:

Watanabe Mari,Matsuzaki Kazuya,Sato Osamu,Fukuhara Yoshiya,Terasawa Masato, ,

Abstract

Recent product components have been designed as a combination of complex forms for advanced functionality. Such high degree-of-freedom forms are shaped by various manufacturing processes. In the industrial supply chain, the deviation of a manufactured form from its designed form must be verified to ensure product quality. Three-dimensional (3D) measuring systems are typically used for verification. To validate the product manufacturing performance accurately, a measurement procedure that can derive the measurands of forms with small measurement uncertainty is necessitated. For simple geometries such as flats, spheres, and cylinders, precise measurement and uncertainty evaluation methods have been established; however, those for complex forms are still being developed. In this study, measurement uncertainty is assessed by measuring a calibrated gauge and comparing the measured with calibrated values. Several gauges configured with basic geometric elements have been proposed as a reference for complex form measurements, and some issues remain. Some of the gauges do not sufficiently simulate the forms of actual product components, whereas other gauges are difficult to calibrate with small uncertainties. Herein, we discuss a possible approach for solving these problems in the metrology of complex forms using 3D measuring systems. First, a new gauge concept is proposed. The gauge is designed by extracting the complex features of the actual product form and segmenting the gauge’s form into various circular arc curvatures. The geometric parameters are well calibrated, and the measurable angular range of the curvature is not limited. A representative gauge based on this concept is described. Next, a robust and small-uncertainty calibration method for complex-form objects is described. The area encompassing the target cross-section is measured, and an envelope is generated on the probe tip mechanical surface from the probe tip centers to determine the measured surface. Finally, the calibration and measurement uncertainty evaluation for the geometric parameters of the new gauge are quantitatively presented. It is verified that the proposed calibration procedure is applicable to freeform measurements, and that both simple and complex forms can be measured within a 1.5 μm uncertainty.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3