Improvement of Chip Evacuation in Drilling of Lead-Free Brass Using Micro Drill

Author:

Kato Hideharu, ,Nakata Shingo,Ikenaga Noriaki,Sugita Hiroaki,

Abstract

As the miniaturization of integrated circuits has progressed, the penetration holes of bonding jigs have become smaller. However, micro drills have a tendency to break when drilling small holes with high aspect ratios. Moreover, to reduce the impact on the environment, there has been a recent trend towards the use of lead-free brass as jig materials, but these are very difficult to drill. In the present study, small holes are drilled in lead-free brass using a micro drill, and the effects of web thinning, the helix angle, and the nick geometry on chip evacuation are investigated. The results indicate that drills with a helix angle of 15° have the longest tool life. The formation of a nick on the cutting edge is found to help decrease the thrust force during deep drilling. A drill with a relatively shallow nick perpendicular to the cutting edge have excellent chip discharge performance, and its cutting force is stable. Nick treatment effectively decreases the thrust force at a deep drilling position.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3