Author:
Wang Shushu, ,Badarinath Rakshith,Lehtihet El-Amine,Prabhu Vittaldas
Abstract
Customer participation in the design stage of creating personalized products is increasing. Additive manufacturing (AM) has become a popular enabler of personalization. In this study, we evaluate the fabrication of an open-source robot arm in terms of cost, build time, dimensional and locational accuracy, end-effector accuracy, and mechanical properties. The mechanical components of the table-top robot were fabricated using two different AM processes of fused deposition modeling (FDM) and material jetting (polymer jetting or PolyJet). A reduction of infill density by 50% in the FDM process slightly decreased the building time, material cost, and tensile strength, but induced a 95% reduction in yield strength. A simulation of the mechanical assembly using the CAD models for the robot and the expected tolerances of the components estimated the end-effector positioning accuracy as 0.01–0.22 mm. The 3D printed robot arm was redesigned and fabricated using the best evaluated process in this study.
Publisher
Fuji Technology Press Ltd.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Reference23 articles.
1. S. M. Davis, “From “future perfect”: Mass customizing,” Planning review, Vol.17, No.2, pp. 16-21, 1989.
2. A. M. Fiore, L. Seung-Eun, and G. Kunz, “Psychographic variables affecting willingness to use body-scanning,” J. of Business and Management, Vol.9, No.3, pp. 271, 2003.
3. F. Salvador , P. M. De Holan, and F. T. Piller, “Cracking the code of mass customization,” MIT Sloan management review, Vol.50, No.3, pp. 71, 2009.
4. K. Jiang, H. L. Lee, and R. W. Seifert, “Satisfying customer preferences via mass customization and mass production,” IIE Trans., Vol.38, No.1, pp. 25-38, 2006.
5. A. M. Kaplan and M. Haenlein, “Toward a parsimonious definition of traditional and electronic mass customization,” J. of product innovation management, Vol.23, No.2, pp. 168-182, 2006.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献