Model-Based Deterioration Estimation with Cyber Physical System

Author:

Hiruta Tomoaki,Umeda Yasushi, ,

Abstract

A key aspect of life cycle management for pursuing sustainability is machine condition prognosis, which requires a condition monitoring system that estimates machine system deterioration to assist engineers in determining which maintenance actions to take. Conventional data-driven methods such as machine learning, have two issues. One is data dependency. The accuracy of a data-driven method depends on the data volume because a data-driven method builds a classification model on the basis of historical data as training data. However, it is difficult to acquire enough data on all deterioration modes, which requires a long time, because deterioration modes are diverse, and some of them rarely happen. The other issue is interpretability. When a condition monitoring system using a data-driven method sends the degree of deterioration (DoD) of the machine system to maintenance engineers, they have difficulty in understanding the results because the method is a black box. The objective of this paper is to address these two issues. We propose a model-based method that simulates machine system deterioration with a cyber physical system (CPS). Model-based methods address these issues in the following manner. First, the methods can simulate the progress of deterioration from an initial condition to failure to estimate the DoD. Second, the methods employ mathematical models that represent machine systems. Engineers create such mathematical models (which we call “physical models”) by referring to various kinds of knowledge like design information and the result of failure mode and effects analysis. A physical model allows us to reason about a machine system to address interpretability. For dealing with machinery that has multiple operation modes, we introduce a state space to clarify the relationship among input, observable state variables, and DoD in a physical model. The CPS estimates DoD by comparing observed data with simulated data in the state space. In our case study, we evaluated our proposed method with a hydraulic pump of a mining machine. First we created a physical model with Modelica, which is a multi-domain modeling language. Then, the method constructed the state space by simulating deterioration with the physical model given all combinations of inputs and DoD. After that, we showed that the estimated DoD tended to increase until the hydraulic pump was replaced, using the observed data from an actual mining machine. As a result, the experimental results revealed that the proposed method succeeded in identifying the DoD with observed data of the hydraulic pump of a mining machine.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3