Nanotemplate-Guided Self-Assembly of Gold Nanoparticles and its Application to Plasmonic Bio/Chemical Sensing
-
Published:2018-01-05
Issue:1
Volume:12
Page:79-86
-
ISSN:1883-8022
-
Container-title:International Journal of Automation Technology
-
language:en
-
Short-container-title:IJAT
Abstract
This paper presents a high-precision and high-yield nanotemplate-guided self-assembly process for spherical gold nanoparticles. This process enables us to arrange particles in designated patterns on a substrate with nanotemplates. These particles are trapped on the nanotemplate by liquid-air interfacial force during drying of the colloidal solution. In this method, particle concentration and electrostatic interaction between particles have a considerable effect on the assembly yield. The particle concentration should be optimized based on the template pattern. A nanogap-controlled particle arrangement with a high yield is achieved by controlling the electrostatic interaction, which is accomplished by adding an electrolyte. This technique enables control of the plasmonic resonance properties of metal nanoparticles on substrates for many emerging applications. Among them, this paper discusses the application of nanotemplate-guided self-assembly to an ultrasensitive nanostructure for surface-enhanced Raman spectroscopy. The gold nanoparticle dimer, which has been reported as the highest Raman enhancing structure, is directionally arrayed on a substrate. The highest enhancement can be achieved when the direction of a particle connection for a dimer is matched to the polarization direction of incident light. A considerable enhancement can be achieved at all dimers. The fabricated structures are evaluated by focusing on the polarization angle. The 10-11-M limit of detection and a 0.05-s rapid detection are achieved by using 4,4-bipyridine molecules with single-molecule sensitivity.
Publisher
Fuji Technology Press Ltd.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Reference52 articles.
1. A. Henglein, “Physicochemical properties of small metal particles in solution: “microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition,” The J. of Physical Chemistry, Vol.97, No.21, pp. 5457-5471, 1993. 2. H. Nakamura, X. Li, H. Wang, M. Uehara, M. Miyazaki, H. Shimizu, and H. Maeda, “A simple method of self assembled nano-particles deposition on the micro-capillary inner walls and the reactor application for photo-catalytic and enzyme reactions,” Chemical Engineering J., Vol.101, No.1-3, pp. 261-268, 2004. 3. N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface,” Analytical chemistry, Vol.74, No.3, pp. 504-509, 2002. 4. C. Sonnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol., Vol.23, No.6, pp. 741-5, 2005. 5. V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater., Vol.12, No.4, pp. 304-309, 2013.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. SERS Detection of a Single Nucleobase in a DNA Oligomer Using a Gold Nanoparticle Dimer;2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII);2019-06
|
|