Surrounding Structure Estimation Using Ambient Light

Author:

Mir Bilal Ahmed,Sasaki Tohru,Nagahata Yusuke,Yamabe Eri,Miwa Naoya,Terabayashi Kenji, ,

Abstract

Image measurement technology – widely used in present society – has made substantial progress. It involves processes such as image input, target extraction, and measurement of the extracted region to obtain information from an image. These processes are computationally intensive because they require a large amount of information such as complex features, which is often an obstacle to improving and speeding up image processing tasks. In contrasts, living organisms easily recognize their own surroundings in real time. In cognitive science research studies, for example, visual affordance studies have shown that organisms perceive and recognize their surrounding environment and objects from ambient light, which is formed by reflected and scattered light in the environment. By applying this natural mechanism to image measurement technology, it is possible to obtain the information necessary to recognize the surrounding environment by observing ambient light without necessarily detecting or recognizing the object. In this study, we propose a direct method of assessing the surrounding environment by capturing ambient light as luminance.

Funder

First Bank of Toyama

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference27 articles.

1. J. J. Gibson, “The Senses Considered as Perceptual Systems,” Houghton Mifflin, 1966.

2. J. J. Gibson, “The ecological Approach to Visual Perception,” Lawrence Erlbaum Assoc Inc., 1979.

3. G. A. Kaplan, “Kinetic disruption of optical texture: The perception of depth at an edge,” Perception and Psychophysics, Vol.6, pp. 193-198, 1969.

4. J. J. Gibson, G. A. Kaplan, H. N. Reynolds, and K. Wheeler, “The change from visible to invisible,” Perception and Psychophysics, Vol.5, pp. 113-116, 1969.

5. A. Parker, “Birth of the eye,” tlanslated by M. Watanabe and Y. Imanishi, Soshisha, 2009.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3