A 3D Shape-Measuring System for Assessing Strawberry Fruits

Author:

Kochi Nobuo,Tanabata Takanari,Hayashi Atsushi,Isobe Sachiko, ,

Abstract

Plant shape measurements have conventionally been conducted in plant science by classifying their shape features, by measuring their widths and lengths with a Vernier caliper, or by similar methods. Those measurements rely heavily on human senses and manual labor, making it difficult to acquire massive data. Additionally, they are prone to large measurement differences. To cope with those problems of conventional measuring methods, we are developing a three-dimensional (3D) shape-measuring system using images and a reliable assessment technique. 3D objects enable us to assess and measure shape features with high accuracy and to automatically measure volume, which conventional methods cannot. Thus, our new system is capable of automatically and efficiently measuring objects. Our goal is to obtain wide acceptance of our method at actual research sites. Unlike industrial products, it is difficult to properly assess the measurements of plants because of their object fluctuations and shape complexities. This paper describes our automatic 3D shape-measuring system, the method for assessing measurement accuracy, and the assessment results. The measurement accuracy of the developed system for strawberry fruits is 0.6 mm or less for 90% or more of the fruit and 0.3 mm or less for 80%. This evidence supports the system’s capability of shape assessment. The developed system can fully automate photographing, measuring, and modeling objects and can semi-automatically analyze them, reducing the time required for the entire process from the conventional time of 6–7 h to 1.5 h. The developed system is designed for users with no technical knowledge so that they can easily use it to acquire 3D measurement data on plants. Thus, we intend to expand measurable objects from strawberry fruits to other plants and their parts, including leaves, stalks, and flowers

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference38 articles.

1. T. Mochizuki, “Progress and Future Aspects of Strawberry Bleeding in Japan,” Breeding Research, Vol.2, No.3, pp. 155-163, 2000 (in Japanese).

2. Plant Variety Protection PVP Office at Maff, Japan Test Guidelines, http://www.hinsyu.maff.go.jp/info/sinsakijun/ botanical_taxon_e.html [Accessed April 17, 2017]

3. K. Dominik, D. K. Großkinsky, J. Svensgaard, S. Christensen, and T. Roitsch, “Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap,” J. of Experimental Botany, Vol.66, Issue 18, pp. 5429-5440, 2015.

4. S. Yabe, K. Uehara, Y. Yoshitsu, K. Watanabe, and K. Noshita, “How far have phenotyping systems been evolving?,” Breeding Research, Vol.18, No.2, pp. 67-71, 2016 (in Japanese).

5. A. Hayashi, N. Kochi, S. Isobe, and T. Tanabata, “Development of 3D Shape Measuring Method for Strawberry Fruits,” The Int. Conf. on The Status of Plant & Animal Genome Research, January14-18, P0626, 2017.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3