Comparison of Two Parallel Offsetting Algorithms Free from Conflicts Between Threads

Author:

Inui Masatomo, ,Ishii Daiki,Umezu Nobuyuki

Abstract

Offset computation for expanding a polyhedral object by an offset radius is a fundamental geometric process frequently used in manufacturing applications. This process combined with the triple-dexel representation solid model has become popular because of its robustness and compatibility with parallel processing using a graphics processing unit (GPU). In parallel geometric processing, conflicts between threads must be avoided. Thus, we propose a novel parallel offsetting algorithm free from conflicts between threads. The triple-dexel model is a combination of x-, y-, and z-axis-aligned dexel models. Each dexel model is defined based on an orthogonal grid given on a coordinate plane. We subdivide the grid into several sub-grids of a fixed size in advance. For each sub-grid, a block of GPU threads is assigned. As each GPU thread always processes different dexel elements from the other threads in this method, no conflict occurs. Our research group has previously presented a parallel offset computation algorithm for a polyhedral solid model that also uses a triple-dexel representation model and a GPU. In the previous algorithm, the surface polygons of the model are classified into several groups in advance. The parallel offset computation of multiple polygon groups is realized by selecting groups of polygon in which the offset processing of the polygons does not affect one another. This selection process is time-consuming. Computational experiments were performed to analyze the performance difference between the current algorithm and our previous algorithm. In our experiments, the current algorithm achieved speedups of 1.4 times to 3.2 times compared to our previous offsetting algorithm.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Digital Tools Integration and Human Resources Development for Smart Factories;International Journal of Automation Technology;2022-05-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3