Prevention of Depth-of-Cut Notch Wear in CBN Tool Edge by Controlling the Built-up Edge

Author:

Kiyota Hiroki, ,Itoigawa Fumihiro,Kakihara Atsushi,Nakamura Takashi

Abstract

During the cutting of Inconel 718 with a Cubic Boron Nitride (CBN) tool under roughmachining conditions, notch wear is prominently formed at the depth-ofcut line. In this study, close-up observations around the tool edge by a high-speed video camera were conducted to investigate the cause of notch wear. The results suggest that notch wear is caused by unstable extrusion of the Built-Up Edge (BUE) that forms under the chamfered edge as well as by secondary chip formation due to the side flow at the depth-of-cut line. The BUE extrusion behavior depends on the tool geometry, such as the chamfer angle, the chamfer width and the rake angle. The secondary chip easily forms if the curled BUE is unstably extruded. However, the stable uncurled BUE extrusion causes neither the secondary chip nor the notch wear. Therefore, optimization of the tool geometry to obtain a stable BUE extrusion is examined to suppress the notch wear.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3