Development of a High Precision Machining Center and its Motion Accuracy

Author:

Oshita Isao, ,Otsubo Hisashi,Sogabe Masatoyo,Iwashita Yasusuke,Kakino Yoshiaki, ,

Abstract

In the fabrication of parts and components using dies and molds for optical and/or medical use instruments, there are standing requirements that the accuracy of the form of the final products be maintained within a tolerance of 1.0μm or less and that the roughness of the machined surface be held to 0.2μm Ra or less while high production efficiency is maintained. The required accuracy of form, smoothness of the machined surface, and efficiency of production stated above can be achieved by high precision machine tools, but are beyond the performance properties expected of conventional, general-use machining centers, both of which are readily available on the open market. The authors (hereinafter collectively referred to as “the group”) who did this research agreed to refer to the machining centers that can satisfy both of the above-mentioned performance requirements as “Subject Machining Centers,” or “Subject MC,” while the other machining centers are referred to as “Conventional Machining Centers” or “Conventional MC.” This research includes a structural study of a Subject MC, followed by the actual designing and manufacturing processes of such a Subject MC, It was then subjected to an appraisal of its accuracy of motion from the data obtained through actual measurements, and a verification of the precision attained in the manufacturing process of the lens molds it produced. Through the combined use of a frictionless drive train using a hydrostatic guide and linear motor drive, together with the overall enhancement of the rigidity of the structure of the Subject MC, the following results were achieved.1.Straight line motion accuracy with a deviation of 0.2μm/100 mm or less was attained. Also, the roundness of 0.36μm of the arc interpolation movement was achieved, confirmed with a grid encorder. (“Roundness” in this study is defined as the magnitude of the deviation of either an arc or a circle as measured against their geometrically correct counterparts.)2.As a position loop gain as high asKp= 140/s was attained with the servo mechanism adopted, it was confirmed that the actual use of the micro step feed at uniform separations of 10 nanometers had become possible.3.It became possible to mold a lens with a roundness of 0.53μm and a surface roughness of 0.05μm Ra after machining. (“Ra” denotes the arithmetical average of surface roughness after machining.)

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3