Author:
Shiga Yuichi, ,Tanaka Yutaka,Goto Hiroyuki,Takeda Hiroshi,
Abstract
Flight training simulators serve to reduce in-flight activities related to training and research, preserving fuel, decreasing aircraft operating costs, and minimizing noise pollution. In terms of worldwide market forecast for commercial air transport, the market share of the Asia / Pacific region will increase from its current 25% growth to 30%, and the largest market will be mid-range jets. In this paper, a rotational type of tripod parallel mechanism with a large workspace and a small installation area for a motion platform of a new flight simulator is proposed and designed. The proposed parallel mechanism has three legs rotating on the ground. Each leg supporting the motion platform changes its turning radius on the base frame. Three sliding and rotating motions realize six degrees of freedom for the motion platform. In order to evaluate the movements of the mechanism, a virtual motion simulator to calculate the movements of the mechanism and to analyze the performance of the workspace through repeated calculations is developed. The analytical results show that the developed rotational type of the tripod parallel mechanism has a larger motion space and tilt angles than dose the conventional Stewart-Gough platform parallel mechanism for flight simulators.
Publisher
Fuji Technology Press Ltd.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Reference11 articles.
1. K. H. Hunt, “Structual Kinematics of In-Parallel-Actuated Robot Arms,” ASME J. of Mech. Trans. and Aut. In Des., Vol.105, pp. 705-712, 1983.
2. T. S. Zhao, J. S. Dai, and Z. Huang, “Geometric Analysis of Overconstrained Parallel Manipulators with Three and Four Degrees of Freedom,” JSME Int. J., Series C, Vol.45, No.3, pp. 730-740, 2002.
3. “Worldwide Market Forecast for Commercial Air Transport 2010-2029,” Japan Aircraft Development Corporation, YGR-5063, 2010.
4. D. Stewart, “A platform with six degrees of freedom,” Proc. Inst. Mech. Eng., Vol.180, Part 1, No.15, pp. 371-386, 1965.
5. E. F. Fitchter, “A stewart Platform Based Manipulator: General Theory and Practical Construction,” Int. J. of Robotics Research, Vol.5, No.2, pp. 157-182, 1986.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献