Microscopic Textured Surfaces for Micro-Fluidic Applications

Author:

Garg Mayank, ,Agrawal Amit,Singh Ramesh K.,Joshi Suhas S.

Abstract

Many attempts have been made to fabricate textured surfaces that imitate the configurations of naturally occurring surfaces, the most common being the hierarchical microstructure on a lotus leaf. In addition, numerical simulations have also been performed to evaluate limited variations in the configurations of the textured surfaces. However, in reality, the surfaces occurring in nature have numerous variations. In this work, an attempt is made to consider a few of these variations on a surface bearing micro-pillars used in a micro-channel. The variations in the surface texture geometry include a change in the orientation, height, and corner radius of micro-pillars. Numerical simulations are performed using CFD-based methods to evaluate the pressure drop across the micro-channels bearing the textured surfaces on their bottom face. It is observed that the surfaces bearing uniform, upright pillars offer the least resistance to fluid flow while flat surfaces offer the highest resistance. While the orientation of the pillars with respect to flow direction does not change the pressure drop significantly, the pillars with rounded edges and the pillars with larger standard deviations in their heights offer considerably more resistance to the flow of fluid than the uniformly upright pillars. This study will help designers to incorporate these variations in their surface design to obtain the desired results.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3