Control of Spindle Position and Stiffness of Aerostatic-Bearing-Type Air Turbine Spindle
-
Published:2022-07-05
Issue:4
Volume:16
Page:456-463
-
ISSN:1883-8022
-
Container-title:International Journal of Automation Technology
-
language:en
-
Short-container-title:IJAT
Author:
Tanaka Tomohiro,Kato Tomonori,Otsubo Tatsuki,Koyama Atsuhiro,Yazawa Takanori, ,
Abstract
Air turbine spindles with aerostatic bearings are widely used in ultraprecision machining equipment. Ultraprecision grinding processes using air turbine spindles with aerostatic bearings include constant-pressure dry lapping of nano-polycrystalline diamond (NPD) tools and ultraviolet irradiation polishing of chemical vapor deposition diamond films. In the dry lapping of NPD tools, it is necessary to achieve constant-pressure grinding while flexibly adjusting the contact force between the NPD tool and the truer fixed on the end face of the aerostatic spindle to form a nose bite with a cutting-edge rounding radius, R, of 0.1 nm. However, it is common for operators to manually adjust the cut depth and the air pressure supplied to the aerostatic bearing by relying on the noise and rotation speed during machining. Moreover, aerostatic spindles without a control mechanism, such as active bearings, are widely used because of their low costs and versatility. For several years, the authors have been developing a method to control air bearing stiffness by controlling the bearing supply pressure with high speeds and precision using a high-precision quick response regulator for aerostatic spindles without a control mechanism, such as active bearings. In this study, the compliance control (control of spindle position and stiffness) of aerostatic bearings was investigated using the proposed method, and the effectiveness of the method to ultraprecision grinding applications was demonstrated.
Funder
Japan Society for the Promotion of Science
Publisher
Fuji Technology Press Ltd.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Reference25 articles.
1. H. Mizumoto, T. Matsubara, H. Yamamoto, K. Okuno, and M. Yabuya, “An Infinite Stiffness Aerostatic Bearing with an Exhaust-Control Restrictor,” P. Seyfried, H. Kunzmann, P. McKeown, and M. Weck (Eds.), “Progress in Precision Engineering,” pp. 315-316, Springer, doi: 10.1007/978-3-642-84494-2_35, 1991. 2. H. Mizumoto, H. Tanaka, K. Okuno, T. Matsubara, and R. Kawakami, “An Active Air Bearing – Ultra-Precision Control of Floating Position and Vibration –,” J. of the Japan Society of Precision Engineering, Vol.57, No.11, pp. 2054-2059, doi: 10.2493/jjspe.57.2054, 1991 (in Japanese). 3. A. Shimokobe, “Principles and Applications of Active Aerostatic Bearing -1-,” Science of Machine, Vol.42, No.4, pp. 475-481, 1990 (in Japanese). 4. S. Koizumi, “Ultra-precision Machining and its Application to Advanced Accelerators (4),” J. of Particle Accelerator Society of Japan, Vol.3, No.2, pp. 137-143, 2006 (in Japanese). 5. T. Miyaguchi, M. Masuda, E. Takeoka, and H. Iwabe, “Effect of tool stiffness upon tool wear in high spindle speed milling using small ball end mill,” Precision Engineering, Vol.25, No.2, pp. 145-154, doi: 10.1016/S0141-6359(01)00067-8, 2001.
|
|