Affiliation:
1. Department of Precision Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
Abstract
Owing to recent interest in the production of flexible devices, it is necessary to develop a more convenient approach in which silicon (Si) thin film transistors (TFTs) are fabricated directly onto the flexible substrates at low substrate temperatures. Unfortunately, the physical limitations of conventional plasma-enhanced chemical vapor deposition (PECVD) under low pressures becomes a critical obstacle. In this study, Si film deposition using PECVD under atmospheric pressure excited by very high-frequency electrical power was investigated to overcome this issue. Tetramethylsilane [Si(CH3)4] is used as a source gas that is much safer than silane (SiH4) gas. We investigated the effects of the reactive gas concentration and specific energy (the ratio of input power to unit volume of the reaction gas) on carbon incorporation into the resultant films. Based on the results, we discuss the possibility of forming Si films with sufficiently low carbon content, which is applicable to Si TFTs.
Funder
Ministry of Education, Culture, Sports, Science and Technology
Japan International Cooperation Agency
Publisher
Fuji Technology Press Ltd.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering