A Digital Perspective on Machine Tool Calibration

Author:

Montavon Benjamin, ,Dahlem Philipp,Peterek Martin,Schmitt Robert H.

Abstract

Machine tool calibration and subsequent controller-based compensation are industrially established and research-intensive techniques used to monitor and increase the volumetric performance in high-precision manufacturing. Moreover, a variety of interim performance checks and integrated sensor approaches have been developed to predict volumetric performance degradation and avoid an economically undesirable downtime. However, the fragmentation of data acquisition and management limits the potential for additional insights with respect to the value creation based on existing methods in the field of machine tool calibration. The authors reviewed the former from the perspective of data sources according to the frequency of their contribution to the digital twin of a machine tool, adopting a digital view regarding machine tool calibration within the Internet of Production concept. The latter proposes a semantic separation of cyber physical production systems into four layers: data sources, data access and provisioning, storage and analytics, and user respective agent feedback. To achieve a common representation across different layers, devices, and industrial Internet protocols, a model-based abstraction layer is required, which must be compatible with existing standards within the field, e.g., the ISO 230 series. Utilizing different Internet of Production architectures and platforms, a multitude of parallel analytic applications and an evaluation of complex models are enabled owing to the availability of ample computing resources, among which the machine tool’s numerical controller takes the role of an edge-device injecting the feedback into the production process. A proof-of-concept of a digital approach to machine tool calibration data storage and processing was established based on the software prototype VoluSoft, which implements an ISO 230-1:2012 based abstraction layer in JavaScript Object Notation format, and an evaluation of the kinematic models to estimate the volumetric performance at the functional point. Apart from generating compensation tables, the results are used to project the expected deviation at the tool tip to the computer-aided design-model of a work piece, correlate the error motions using the temperature data acquired by integrated sensors, and estimate the contribution of the volumetric performance limitation to the uncertainty budget of on-machine measurements.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference36 articles.

1. A. A. Potdar, A. P. Longstaff, S. Fletcher, and N. S. Mian, “Application of Multi Sensor Data Fusion Based on Principal Component Analysis and Artificial Neural Network for Machine Tool Thermal Monitoring,” Proc. of Laser Metrology and Machine Performance XI: 11th Int. Conf. and Exhibition on Laser Metrology, Machine Tool, CMM and Robotic Performance (Lamdamap 2015), University of Huddersfield, Queensgate, Huddersfield, West Yorkshire, UK, pp. 228-237, 2015.

2. A. M. Abdulshahed, A. P. Longstaff, S. Fletcher, and A. Myers, “Thermal error modelling of machine tools based on ANFIS with fuzzy c-means clustering using a thermal imaging camera,” Applied Mathematical Modelling, Vol.39, No.7, pp. 1837-1852, 2015.

3. C. Baum, C. Brecher, M. Klatte, T. H. Lee, and F. Tzanetos, “Thermally induced volumetric error compensation by means of integral deformation sensors,” Procedia CIRP, Vol.72, pp. 1148-1153, 2018.

4. K. Szipka, A. Archenti, G. W. Vogl, and M. A. Donmez, “Identification of machine tool squareness errors via inertial measurements,” CIRP Annals, Vol.68, No.1, pp. 547-550, 2019.

5. G. W. Vogl, M. A. Donmez, and A. Archenti, “Diagnostics for geometric performance of machine tool linear axes,” CIRP Annals – Manufacturing Technology, Vol.65, No.1, pp. 377-380, 2016.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Laser Tracker-Based on-the-Fly Machine Tool Calibration without Real-Time Synchronization;Journal of Manufacturing and Materials Processing;2023-03-07

2. Cognitive digital twin: An approach to improve the maintenance management;CIRP Journal of Manufacturing Science and Technology;2022-08

3. Grinding/Cutting Technology and Equipment of Multi-scale Casting Parts;Chinese Journal of Mechanical Engineering;2022-07-28

4. Digital twins-based smart manufacturing system design in Industry 4.0: A review;Journal of Manufacturing Systems;2021-07

5. Forward Kinematics Model for Evaluation of Machining Performance of Robot Type Machine Tool;International Journal of Automation Technology;2021-03-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3