Influence of Agitator Shape on Characteristics and Grinding Efficiency of Attritor Mill

Author:

Ye Chenzuo,Takaya Yutaro,Tsunazawa Yuki,Mochidzuki Kazuhiro,Tokoro Chiharu, , , , ,

Abstract

Grinding is a unit of operation of a pure mechanical process. An attritor is a grinder able to be used for fine or selective grinding. However, few studies have reported on the optimum design for the attritor. The attritor’s grinding characteristics and grinding effect depend not only on the operating conditions, but also on the geometry of the agitator. Therefore, we investigated the effect of the agitator shape on the grinding efficiency from the viewpoint of experiments, kinetic analysis, and discrete element method (DEM) simulations. We conducted grinding experiments with two different agitators. One was Agitator A, a traditional design with two pairs of 90° staggered mixing arms at the middle and bottom of the mixing shaft. The other was Agitator B, with a lower mixing arm inclined by 10° along the horizontal direction. We found that the grinding rate constant of Agitator B was approximately 40% greater than that of Agitator A. Although the size distribution of the particles was relatively dispersed after grinding with Agitator B, the distribution was concentrated mainly within two ranges (<0.5 mm and 2–4 mm) with Agitator A. These results and an elemental analysis of each size fraction suggested that the dominating grinding mode in Agitator A was surface grinding, whereas in Agitator B, it was bulk grinding. In terms of the influence of the agitator shape, the DEM simulation results showed that the kinetic energy of the grinding media in Agitator B was 0.0046 J/s, i.e., larger than the 0.0035 J/s obtained for Agitator A. A collision energy analysis showed that the dominating collision was between the media and wall in the tangential direction for both models. The collision energy of the media in Agitator B was larger than that of that in Agitator A. The results from the DEM simulation can help us evaluate the experimental results and infer the reasons why the grinding rate constant in Agitator B is larger than that in Agitator A.

Funder

Tokyo Metropolitan Government

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3