Forest Data Collection by UAV Lidar-Based 3D Mapping: Segmentation of Individual Tree Information from 3D Point Clouds

Author:

Suzuki Taro,Shiozawa Shunichi,Yamaba Atsushi,Amano Yoshiharu, , , ,

Abstract

In this study, we develop a system for efficiently measuring detailed information of trees in a forest environment using a small unmanned aerial vehicle (UAV) equipped with light detection and ranging (lidar). The main purpose of forest measurement is to predict the volume of wood for harvesting and delineating forest boundaries by tree location. Herein, we propose a method for extracting the position, number of trees, and vertical height of trees from a set of three-dimensional (3D) point clouds acquired by a UAV lidar system. The point cloud obtained from a UAV is dense in the tree’s crown, and the trunk 3D points are sparse because the crown of the tree obstructs the laser beam. Therefore, it is difficult to extract single-tree information from 3D point clouds because the characteristics of 3D point clouds differ significantly from those of conventional 3D point clouds using ground-based laser scanners. In this study, we segment the forest point cloud into three regions with different densities of point clouds, i.e., canopy, trunk, and ground, and process each region individually to extract the target information. By comparing a ground laser survey and the proposed method in an actual forest environment, it is discovered that the number of trees in an area measuring 100 m × 100 m is 94.6% of the total number of trees. The root mean square error of the tree position is 0.3 m, whereas that of the vertical height is 2.3 m, indicating that single-tree information can be measured with sufficient accuracy for forest management.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference28 articles.

1. L. Tang and G. Shao, “Drone remote sensing for forestry research and practices,” J. of Forestry Research, Vol.26, No.4, pp. 791-797, 2015.

2. J. Kilian, N. Haala, M. Englich et al., “Capture and evaluation of airborne laser scanner data,” Int. Archives of Photogrammetry and Remote Sensing, Vol.31, pp. 383-388, 1996.

3. S. Ganz, Y. Käber, and P. Adler, “Measuring tree height with remote sensing – A comparison of photogrammetric and LiDAR data with different field measurements,” Forests, Vol.10, No.8, 694, 2019.

4. W. Xu, Z. Su, Z. Feng, H. Xu, Y. Jiao, and F. Yan, “Comparison of conventional measurement and LiDAR-based measurement for crown structures,” Computers and Electronics in Agriculture, Vol.98, pp. 242-251, 2013.

5. A. Persson, J. Holmgren, and U. Soderman, “Detecting and measuring individual trees using an airborne laser scanner,” Photogrammetric Engineering and Remote Sensing, Vol.68, No.9, pp. 925-932, 2002.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High-Resolution Point Cloud Registration Method for Three-Dimensional Piping Measurements;Journal of Robotics and Mechatronics;2023-12-20

2. Stereo vision SLAM-based 3D reconstruction on UAV development platforms;Journal of Electronic Imaging;2023-02-24

3. Research on segmentation algorithm of UAV remote sensing image based on deep learning;Fourth International Conference on Geoscience and Remote Sensing Mapping (GRSM 2022);2023-02-23

4. Blockchain-Based UAV-Assisted Forest Supervision and Data Sharing;Communications in Computer and Information Science;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3