Artificial Neural Networks for Tool Wear Prediction Based on Sensor Fusion Monitoring of CFRP/CFRP Stack Drilling

Author:

Caggiano Alessandra,Nele Luigi, , ,

Abstract

An intelligent sensor monitoring procedure was implemented to monitor the drilling of carbon fiber reinforced plastic (CFRP)/CFRP stacks used in the assembly of aircraft fuselage panels; the signals from these sensors were then used to develop an artificial neural network-based cognitive paradigm to predict tool wear, which would allow on-line decision making regarding tool replacement. A multiple sensor system, capable of acquiring signals relative to thrust force, torque, and acoustic emission RMS, was employed during experimental drilling tests, under different rotational speed and feed conditions. Advanced sensor signal processing techniques, including signal conditioning and segmentation, as well as statistical feature extraction and data fusion, were implemented on the acquired signals. Selected statistical features extracted from the multiple sensor signals in the time domain were combined via sensor fusion techniques to construct sensor fusion pattern vectors. These were then fed to artificial neural networks for pattern recognition, with the goal of finding correlations which would allow the prediction of the corresponding tool wear. The tool wear prediction performed by the artificial neural network can be utilized to support decision making at the appropriate time for worn tool replacement, which is extremely useful for drilling automation, as well as for estimating the quality of the drilled holes.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3