Mirror-Surface Finishing by Integrating Magnetic-Polishing Technology with a Compact Machine Tool

Author:

Manabe Yuki,Murakami Hiroki,Hirogaki Toshiki,Aoyama Eiichi,Furuki Tatsuya, ,

Abstract

In recent years, owing to the advent of mobile phones, product miniaturization and multifunctionalization have rapidly progressed. However, the large-sized machine tools for the manufacture of small products waste a considerable amount of space and power. The present study aimed at applying a magnetic-polishing method using a ball-end mill-type tool to examine the optimum processing conditions. This was done to apply a mirror finish for the integration of the cutting and polishing processes by using the small machine tool. The magnetic-polishing effect was evaluated from the point of view of the polishing amount, surface roughness, specimen shape, and mirror-surface condition. In addition, the movement of the paste during polishing was observed through images obtained through a high-speed camera. The movement of the paste is considered for effective polishing and other cases. Accordingly, various magnetic-polishing techniques were used for irregularities and step shapes. Various conditions were also examined, and a stable condition was determined. The results reveal that the amount of polishing paste significantly influences the polishing movement. In addition, a sufficient polishing effect could be obtained by duplicating the polishing course by using a sine wave course.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference20 articles.

1. S. Okoma, “A history of computer development,” Kyoritsu Shuppan, 2005 (in Japanese).

2. M. Sakagami, “Latest Trends in Foreign Injection Molding Machines and Technologies (Part 1) Accelerating Eco-Molding,” Pursuing Efficiency, and Improving Productivity Through Process Integration, Plastics age, Vol.61, No.10, pp. 90-95, 2015 (in Japanese).

3. R. Neugebauer, M. Wabner, H. Rentzsch, and S. Ihlenfeldt, “Structure principles of energy efficient machine tools,” CIRP J. of Manufacturing Science and Technology, Vol.4, Issue 2, pp. 136-147, 2011.

4. Y. Okazaki, T. Mori, and N. Morita, “Desk-top NC milling machinewith 200 krpm spindle,” Proc. 2001 ASPE Annual Meeting, pp. 192-195, 2001.

5. M. Honiden, “A study of production optimization by cell production system for assembly,” Japan Society for Production Management, Vol.10, No.2, pp. 181-186, 2004 (in Japanese).

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3