Cutting Capability of Microdrills in Nonstep Drilling

Author:

Uchiyama Mitsuo,Sakata Naoshi, ,

Abstract

There is a high demand for microdrilling processes to drill microholes with diameters equal to or less than 0.2 mm for use in fuel injection nozzles. In this study, nonstep drilling methods are developed for high-efficiency processing. Herein, the effects of the cutting oil supply method and the drill’s feed rate on the developed thrust force and torque during drilling are investigated. Accordingly, it is shown that drop supply of the cutting oil is the optimal method for nonstep drilling because the oil is sucked into the microhole. Furthermore, a high-feed rate is preferred because it produces continuous chips.**This paper is a translation with revision of the paper: M. Uchiyama and N. Sakata, “Cutting capability of micro drills in non-step drilling 1st report: Optimization of cutting oil supply and drill feed,” J. of the Japan Society for Abrasive Technology, Vol.59, Issue 1, pp. 27-31, doi: 10.11420/jsat.59.27, 2015 (in Japanese).

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference8 articles.

1. J. Kusaka, “The Future of the Clean Diesel Engine Technology,” JAMAGAZINE, Vol.46, No.3, pp. 9-13, 2012 (in Japanese).

2. The Nikkan Kogyo Shimbun, “Drill Processing Technique to Support High Efficiency Manufacturing,” February 16, 2009.

3. Y. Nanbu et al., “High-Aspect-Ratio Microdrilling Assisted by Uitrasonic Vibration,” J. Jpn. Soc. Precis. Eng., Vol.77, No.3, pp. 306-310, 2011 (in Japanese).

4. H. Ogawa, “Micromachining Using Ultrasonic Cavitation,” J. Jpn. Soc. Abras. Technol., Vol.57, No.7, pp. 432-435, 2013 (in Japanese).

5. N. Sakata and M. Uchiyama, “Cutting Performance of Microdrills Relating to the Cutting Oil,” Proc. of the 1996 JSPE Autumn Meeting, pp. 645-646, 1996 (in Japanese).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3