Design of Lightweight Cutting Tools

Author:

Häusler Andreas, ,Werkle Kim Torben,Maier Walther,Möhring Hans-Christian

Abstract

Taking into account the growing demand for sophisticated cutting tools in terms of their performance, new approaches, besides the development of the tool’s cutting edge, have to be investigated and validated by physical tests. In this study, methods of topology optimization and hybrid design are adopted for cutting tools. After a quick overview of its motivations, reduction of mass, the design of load paths, and beneficial functions within tool bodies, a structured method and its application on a long shell end mill for metal cutting is described as part of a holistic approach at the system and component levels. The manufacturing of the resulting geometry is examined for additive manufacturing. The optimized structures reduce the spindle power required, especially for acceleration to the desired speed; this, in turn, decreases the energy consumption of the process. Besides bearing static and dynamic loads, composites provide the adjustable option in process-stabilizing damping. In the field of wood cutting, the cutting forces are lower than those in the machining of metals. Here, we describe a planing tool with a large overhang and the first step in its development. The finite element analysis within the software Ansys Workbench and CompositePrep/Post (ACP), the special tool for modeling reinforced structures, are utilized for preparing the layout of the tool. To ensure the structural integrity of fiber reinforced plastic (FRP), the failure criteria proposed by Puck are applied. The overhanging planing tool is clamped on one side. It shows the principles for the development of a prototype and forms the basis for tools with even larger diameters and benefits. The underlying concept of the planing tool prototype is an innovative sandwich concept, wherein sleeves are used to join metal with carbon fiber reinforced plastic (CFRP) in a micro-forming process. Besides the abovementioned advantages, the reduction of acoustic emissions in the very noisy field of wood machining is a promising application.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference18 articles.

1. R. M’Saoubi, D. Axinte, S. Soo, C. Nobel, H. Attia, G. Kappmeyer, S. Engin, and W. Sim, “High performance cutting of advanced aerospace alloys and composite materials,” CIRP Annals – Manufacturing Technology, Vol.64, pp. 557-580, 2015.

2. W. Maier, H.-C. Möhring, and K. Werkle, “Tools 4.0 – Intelligence starts on the cutting edge,” Procedia Manufacturing, Vol.24, pp. 299-304, 2018.

3. H. Ueda, Y. Inoue, S. Nagagno, N. Tsukiuchi, T. Fujii, and T. Koizumi, “Study of a high damping CFRP boring bar. Japan Society of Mechanical Engineers,” NIIElectronic Library Service, 1998.

4. U. Heisel, S. Pasternak, T. Stehle, and S. Schetter, “Using alternative materials in the cutting tools applications,” Prod. Eng. Res. Devel., Vol.8, Nos.1-2, pp. 121-129, 2014.

5. U. Heisel and S. Schetter, “Entwicklung eines Reibwerkzeugs in Leichtbauweise: Faserverbundmaterialien als Konstruktionswerkstoffe erweitern Einsatzmöglichkeiten von Reibwerkzeugen,” Konstruktion, Faserverbundwerkstoffe, Werkzeuge, Wt Werkstattstechnik Online, Vol.102, Nos.1/2, pp. 56-61, 2012.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3