Posture Evaluation Based on Forward Kinematics and Inverse Kinematics of Parallel Link Type Machine Tool

Author:

Tanaka Hiroto, ,Morimoto Yoshitaka,Hayashi Akio,Yamaoka Hidetaka

Abstract

Parallel mechanisms with multiple links have been expected to be used in machining because they are higher in rigidity, accuracy, and output power than series mechanisms, such as industrial robots. However, unlike conventional machine tools, which consist of linear and rotary axes, parallel mechanisms have a large number of error factors. In the parallel link mechanism, there is no guide surface that physically guarantees linearity, and all accuracy is determined by the operating performance of the composite axes. This makes it difficult to identify any error factors. Therefore, a kinematics model is devised, and the behavior of the tool tip is checked by inputting the encoder information during the actual operation of a specific axis. Based on the results, we evaluate the machining characteristics of the target machine tool. The target machine tool in this study is a 5-axis machine tool that combines a 3-DOF parallel mechanism consisting of three linear motion axes and a 2-DOF serial mechanism consisting of two rotary axes. In our previous research, we tried to build a forward kinematics model. Although its prediction accuracy was insufficient, it was possible to actually identify the cause of the defect in the quality of the machined surface using the servo position information of the kinematics machine. However, we have not been able to construct an inverse kinematics model that is suitable for calculating the correction position command value to improve the quality of the machined surface. In this study, based on the shape creation theory, we devise and evaluate the kinematics model of a robotic machine tool that has a parallel mechanism. As a result of comparing the kinematics model with the 3D-CAD model in order to evaluate the accuracy of the former, it was confirmed that the proposed method has high simulation accuracy. Then, machining tests were carried out to evaluate the machining accuracy by measuring, based on proposed kinematics model, the machined surfaces in order to identify the mechanism that affects the texture of the machined surface. In addition, we performed a circle interpolation to confirm the effects of reversing the motion of each drive axis on the behavior of the tool tip. As a result, it is considered that the linear motion axis has a large effect on the behavior of the tool tip on the quadrant glitch of each drive axis. It was also found that the effects of the 1st- and 3rd-axes on the behavior of the tool tip are different from those of the 2nd-axis.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3