Development of Shock-Wave-Powered Actuators for High Speed Positioning

Author:

Kotani Akira, ,Tanaka Toshiharu,Fujishiro Atsushi,

Abstract

A shock wave is a compressive wave which propagates at supersonic speed. A shock wave is generated by the emission of energy for a very short duration by high speed phenomena, such as explosions, discharges, collisions, high speed flights, etc. Shock tube experiments have played an important role in the field of high speed gas dynamics. A shock tube is usually divided by a diaphragm into a driver section and a driven section. Generally, the initial conditions of the driver and driven sections are high and low pressure, respectively. When the diaphragm breaks, a shock wave is generated in the driven section. The density, temperature and pressure of the gas behind the shock wave rise discontinuously. The shock wave arrives at the end wall of the tube, and a reflected shock wave is generated by the reflection from the wall. The quantities behind the reflected shock wave rise further. If the shock wave can be generated continuously without the diaphragm needing to be changed, this phenomenon could possibly be applied to an actuator having a piston that moves at high speed. In this study, equipment powered by a shock wave is produced, and its performance is examined. The results show that piston movement generated by a shock wave is faster than that which is not and that the piston speeds depend on the initial conditions. Also, the characteristic of the actuator powered by the shock wave is revealed.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference10 articles.

1. K. Takayama (Ed.), “Shock Wave Handbook,” Springer-Verlag Tokyo, pp. 7-8, 1996. (in Japanese)

2. T. Suzuki, “An Introduction to Shock Wave Theory,” Shiseibunko, pp. 62-75, 2000. (in Japanese)

3. H. W. Liepmann and A. Roshko, “Elements of Gasdynamics,” Dover Publications, Inc., pp. 39-83, 2001.

4. Z. Han and X. Yin, “Shock Dynamics,” Kluwer Academic Publishers and Science Press, Dover Publications, pp. 1-18, 1993.

5. M. Kadotani, T. Kitagawa, S. Katto, T. Hirayama, T. Matsuoka, H. Yabe, and K. Sasaki, “Development of Pneumatic Servo Bearing Actuator for Nanometer Positioning,” Int. J. of Automation Technology, Vol.3, No.3, pp. 249-256, 2009.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3