High Performance Motion Control of Rotary Table for 5-Axis Machining Centers

Author:

Sato Ryuta, ,Tsutsumi Masaomi

Abstract

We discuss motion control techniques of rotary tables for 5-axis machining centers. Three translational axes and two rotary ones are controlled simultaneously in the machining of complex shapes such as impellers. A tilting rotary table powered by a worm gear is generally used as the rotary axes for 5-axis machining centers, and various causes of inaccuracy exist in the rotary axes. In this study, we clarified three causes of inaccuracy exists in the rotary axis: rotational fluctuation in the worm gear, backlash, and measurement delay of rotary encoder for feedback. Motor torque saturation of the rotary axis also causes a problem when rotational velocity is changed rapidly. Based upon investigated results, we propose compensators for improving synchronous accuracy. We avoid torque saturation in the rotary axis through acceleration-deceleration design. To verify the effectiveness of the proposed compensators, we applied them to an experimental set-up including a rotary axis. As the results of experiments, it is clarified that the proposed compensators improve the synchronous accuracy of translational and rotary axes.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thermal influence on the positioning accuracy of the CNC machine tool rotary tables;IOP Conference Series: Materials Science and Engineering;2021-10-01

2. A novel approach to calculating the dynamic error reflected on an S-shaped test piece;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2020-10-14

3. A novel method for evaluating the validity of dynamic accuracy test pieces for five-axis machine tools;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2020-02-13

4. Improvement of Simultaneous 5-Axis Controlled Machining Accuracy by CL-Data Modification;International Journal of Automation Technology;2019-09-05

5. Motion Accuracy Enhancement of Five-Axis Machine Tools by Modified CL-Data;International Journal of Automation Technology;2018-09-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3