A Simulation Study of Plasmonic Substrate for In-Process Measurement of Refractive Index in Nano-Stereolithography
-
Published:2017-08-30
Issue:5
Volume:11
Page:772-780
-
ISSN:1883-8022
-
Container-title:International Journal of Automation Technology
-
language:en
-
Short-container-title:IJAT
Author:
Michihata Masaki,Kong Deqing,Takamasu Kiyoshi,Takahashi Satoru, , ,
Abstract
Functional surfaces are in demand for recent value-added products. Stereolithography based on evanescent light has been proposed as a technique to fabricate surface nanostructures, but some fabrication error sources must be addressed. In-process measurement is an essential solution to improve the fabrication performance. For in-process measurement in stereolithography, the refractive index of resin is an inherent parameter for product and condition monitoring. This study proposes the in-process measurement of the refractive index of resin based on surface plasmon resonance (SPR). The optical phase response at SPR is highly sensitive to changes in the refractive index of resin but has a narrow sensing range. Therefore, we propose a substrate with a tunable sensing range using lanthanum-modified lead zirconate titanate (PLZT). The structural design was considered using numerical simulation. The SPR conditions were calculated with regard to thickness combinations of PLZT and metal (Ag) films. Depending on these combinations, a sensing range can be tuned on the order of 10-3to 10-4RIU with a sensitivity of 106rad/RIU. However, to realize these performances, the manufacturing accuracy of Ag thin films must be better than 0.1 nm.
Publisher
Fuji Technology Press Ltd.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Reference25 articles.
1. A. A. G. Bruzzone, H. L. Costa, P. M. Lonardo, and D. A. Lucca, “Advances in engineered surfaces for functional performance,” CIRP Annals – Manufacturing Technology, Vol.57, pp. 750-769, 2008. 2. T. Jiang, Z. Guo, and W. Liu, “Biomimetic superoleophobic surfaces: focusing on their fabrication and applications,” J. Mater. Chem. A, Vol.3, pp. 1811-1827, 2015. 3. L. Li, M. Hong, M. Schmidt, M. Zhong, A. Malshe, B. H. in’tVeld, and V. Kovalenko, “Laser nano-manufacturing - State of the art and challenges,” CIRP Annals – Manufacturing Technology, Vol.60, pp. 735-755, 2011. 4. Y. Suzuki, K. Suzuki, M. Michihata, K. Takamasu, and S. Takahashi, “Fabrication of functional microstructures by multi-beam interference lithography using evanescent light,” Proc. Int. Conf. on Precision Engineering (ICPE), pp. 686-689, 2016. 5. M. L. Anne, E. L. G. La Salle, B. Bureaua, J. Tristant, F. Brochot, C. Boussard-Plédel, H. L. Ma, X. H. Zhang, and J. L. Adam, “Polymerisation of an industrial resin monitored by infrared fiber evanescent wave spectroscopy,” Sensors and Actuators B, Vol.137, pp. 687-691, 2009.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|