Posture Optimization in Robot Machining with Kinematic Redundancy for High-Precision Positioning

Author:

Tajima Shingo1,Iwamoto Satoshi1,Yoshioka Hayato2ORCID

Affiliation:

1. Tokyo Institute of Technology, 4259-G2-19 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan

2. The University of Tokyo, Tokyo, Japan

Abstract

Vertically articulated industrial robots are suitable for machining purposes owing to their advantages over multi-axis machine tools, such as larger workspace, easier installation, and lower cost. However, the rigidity and positioning accuracy of industrial robots are inferior to those of machine tools, which renders it difficult to maintain the robot posture required for machining operations. This study focuses on improving the accuracy of robot machining based on posture optimization by exploiting the kinematic redundancy of a six-axis vertically articulated robot. To decrease positioning errors caused by static and dynamic external forces during machining, this study proposes a path generation method for a redundant joint that simultaneously considers the static and dynamic rigidity of the machining robot. The relationships between the static and dynamic mechanical characteristics of the machining robot and the redundant angle are illustrated using two maps: a static stiffness map and a natural frequency map. Using these two maps in the proposed path generation method, the redundant angle that can be selected for the robot posture with arbitrary mechanical characteristics is selected. Experimental results confirm that the proposed path generation method can control the priority of reducing static positioning error and vibration amplitude by changing the weight coefficients. In addition, the proposed method can improve positioning accuracy compared with conventional trajectory generation methods for redundant robots.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3