Author:
Mitsomwang Pusit, ,Nagasawa Shigeru,Kuroiwa Hiroki,Fukushima Yoshio,
Abstract
This paper aims to reveal the deformation/cutting characteristics of a stacked silicone rubber worksheet subjected to a keen tungsten carbide blade (WC) indentation. Cutting parameters such as blade geometry, feed velocity and hardness of underlay sheet were varied and investigated. It was revealed that: (i) the use of the high feed velocity caused the increase of the 1st inflection, the peak and the breaking points of cutting line force. Also, the positions of these points were postponed when increasing the velocity. (ii) Under the high velocity condition (V = 0.416 mm•s-1), the geometry of the blade such as tip radius and primary height affected the cutting line force and the bending deformation of the worksheet. (iii) The application of soft silicone underlay resulted in the postponement of the crack initiation and the breaking positions of the worksheet. However, the final cut edge of the worksheet was invariant with the underlay hardness. In addition, an finite elementmethod analysis of the process was carried out using a non-linear elastic Mooney-Rivlin material model. The cutting resistance and deformation of the worksheet was numerically simulated up to the peak cutting line force point using an FEM model, before the occurrence of large cracking.
Publisher
Fuji Technology Press Ltd.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献